Review Articles / Book Chapters

  1. Tensor Representations and Symmetry in Many-Electron Wave Functions“, T.D. Crawford, R. Di Remigio, Annual Reports in Computational Chemistry 15, Ch. 4, 2019. (10.1016/bs.arcc.2019.08.005)
  2. Reduced-Scaling Coupled Cluster Response Theory: Challenges and Opportunities“, T.D. Crawford, A. Kumar, A. Bazanté, R. Di Remigio, WIREs Comput Mol Sci e1406,1-25 (2019). (10.1002/wcms.1406)
  3. Frontiers of Coupled Cluster Chiroptical Response Theory,” T. D. Crawford in Frontiers of Quantum Chemistry, M. J. Wójcik et al., eds., Springer Nature, Singapore, Ch.3, 2018.
  4. High-Accuracy Quantum Chemistry and Chiroptical Properties,” T. D. Crawford, in Comprehensive Chiroptical Spectroscopy, N. Berova, K. Nakanishi, R. Woody, and P. Polavarapu, eds., Wiley and Sons, vol. 1, pp. 675-697, 2012.
  5. Electronically Excited States in Interstellar Chemistry,” R. C. Fortenberry and T. D. Crawford, in Ann. Rep. Comp. Chem. 7, 195-214 (2011). (10.1016/B978-0-444-53835-2.00009-2)
  6. Reduced-Scaling Coupled-Cluster Theory for Response Properties of Large Molecules,” T. D. Crawford, in Recent Progress in Coupled Cluster Methods: Theory and Applications, P. Carsky, J. Pittner, and J. Paldus, eds., Springer, Dordrecht, pp. 37-55, 2010.
  7. Ab Initio Calculation of Molecular Chiroptical Properties,” T. D. Crawford, Theor. Chem. Acc. 115, 227-245 (2006). (10.1007/s00214-005-0001-4)
  8. The Past, Present, and Future of Quantum Chemistry,” T. D. Crawford, S. S. Wesolowski, E. F. Valeev, R. A. King, M. L. Leininger, and H. F. Schaefer, in Chemistry for the 21st Century, E. Keinan and I. Schechter, eds., Wiley-VCH, Weinheim, pp. 219-246, 2001.
  9. An Introduction to Coupled Cluster Theory for Computational Chemists,” T. D. Crawford and H. F. Schaefer, Rev. Comp. Chem. 14, 33-136 (2000). (10.1002/9780470125915.ch2)

Web Articles

  1. Software Sustainability in the Molecular Sciences,” T.L. Windus and T. D. Crawford, Better Scientific Software, 14 Nov. 2019, bssw.io/blog_posts/software-sustainability-in-the-molecular-sciences.
  2. The Molecular Sciences Software Institute: The Time Is Ripe for Change,” T.D. Crawford and D.G.A. Smith, U.S. Research Software Sustainability Institute, 6 Feb. 2019, urssi.us/blog/2019/02/06/the-molecular-sciences-software-institute-the-time-is-ripe-for-change/.

Editorials and Forewords

  1. 50 and 100 Years Ago in The Journal of Physical Chemistry─2024 Edition,” J.-E. Shea, T. D. Crawford, B. Kirchner, G. Hartland, and W. Aumiller, J. Phys. Chem. A 128, 1551-1554 (2024). (10.1021/acs.jpca.4c00715)
  2. 2023: A Year in Review,” J.-E. Shea, T. D. Crawford, B. Kirchner, G. Hartland, and W. Aumiller, J. Phys. Chem. A 128, 1-2 (2024). (10.1021/acs.jpca.3c07868)
  3. Early-Career and Emerging Researchers in Physical Chemistry Volume 2,” A. N. Alexandrova, J. S. Biteen, S. Coriani, F. M. Geiger, A. A. Gewirth, G. R. Goward, H. Guo, L. Huang, J.−F. Li , T. Liedl, S. Link , Z.−P. Liu, S. Maiti, A. J. Orr-Ewing, D. L. Osborn, J. Pfaendtner, B. Roux, F. Schmid, J. R. Schmidt, W. F. Schneider, L. V. Slipchenko, G. C. Solomon, J. A. van Bokhoven, V. Van Speybroeck, Shen Ye , T. D. Crawford, M. T. Zanni, G. V. Hartland, J.−E. Shea, J. Phys. Chem. A 127, 8967-8970 (2023). (10.1021/acs.jpca.3c06595)
  4. 50 and 100 Years Ago in The Journal of Physical Chemistry 2023,” J.-E. Shea, T. D. Crawford, M. T. Zanni, G. Hartland, and W. Aumiller, J. Phys. Chem. A 127, 2061-2064 (2023). (doi: 10.1021/acs.jpca.3c01130)
  5. 50 and 100 Years Ago in The Journal of Physical Chemistry,” J.-E. Shea, T. D. Crawford, M. T. Zanni, G. Hartland, and W. Aumiller, J. Phys. Chem. A 126, 2149-2151 (2022). (doi:10.1021/acs.jpca.2c01875)
  6. A Venue for Advances in Experimental and Theoretical Methods in Physical Chemistry,” A. Orr-Ewing, T. D. Crawford, M. T. Zanni, G. Hartland, and J.-E. Shea, J. Phys. Chem. A 126, 177-179 (2022). (doi: 10.1021/acs.jpca.1c10457)
  7. Engaging a Complex Domain Science in Software Engineering Best Practices: What Works and What Doesn’t,” T. D. Crawford, P. Saxe, and T. L. Windus, refereed position paper for the Workshop on the Science of Scientific-Software Development and Use, U.S. Department of Energy, Office of Advanced Scientific Computing Research, December 13-15, 2021.
  8. Foreword for “Teaching Programming Across the Chemistry Curriculum,” T. D. Crawford, in Teaching Programming Across the Chemistry Curriculum, Vol. 1387 of ACS Symposium Series, A. Ringer-McDonald and J. A. Nash, Eds., American Chemical Society, Washington, D.C., 2021, pp. ix–x. (10.1021/bk-2021-1387.fw001)
  9. Evolving Sections of The Journal of Physical Chemistry to Reflect an Ever-Changing Field,” J.-E. Shea, T. D. Crawford, M. T. Zanni, and G. V. Hartland, J. Phys. Chem. A 125 (10), 2019-2020 (2021). (10.1021/acs.jpca.1c01038)
  10. Celebrating the 125th Anniversary of The Journal of Physical Chemistry,” J.-E. Shea, T. D. Crawford, M. T. Zanni, and G. V. Hartland, J. Phys. Chem. A 125 (1), 1-2 (2021). (10.1021/acs.jpca.0c11357)
  11. Characteristics of Impactful Computational Contributions to The Journal of Physical Chemistry A,” T. D. Crawford, H. Guo, and A. McCoy, J. Phys. Chem. A 124 (25), 5059-5060 (2020). (10.1021/acs.jpca.0c04148)
  12. The JPC Periodic Table,” G. C. Schatz, A. B. McCoy, J.-E. Shea, C. Murphy, G. Scholes, V. Batista, K. Bhattacharyya, J. Bisquert, T. D. Crawford, T. Cuk, R. Dickson, D. H. Fairbrother, M. Forsyth, J. Fourkas, F. Geiger, A. Gewirth, T. Goodson, G. Goward, H. Guo, G. Hartland, P. Jungwirth, S. Link, G.-Y. Liu, Z.-P. Liu, B. Mennucci, T. Minton, A. Mullin, O. Prezhdo, W. Schneider, B. Schwartz, N. Snider, G. Solomon, E. Weitz, X. Yang, A. Yethiraj, F. Zaera, M. Zanni, J. Zhang, H.-J. Zhong, and T. Zwier, J. Phys. Chem. A/B/C/Lett. 123, 5837-5848 (2019). (10.1021/acs.jpca.9b03461)
  13. New Physical Insights in Theoretical and Computational Studies“, T. D. Crawford and A. B. McCoy, J. Phys. Chem. A 121(26), 4850-4850 (2017).(10.1021/acs.jpca.7b05908)

Journal Articles

  1. The Structure of [18]Annulene Revisited: Consequences for Computing Benzenoid Systems,” R. A. King, P. R. Schreiner, T. D. Crawford, J. Phys. Chem. A 128, 1098–1108 (2024). (doi: 10.1021/acs.jpca.3c07797)
  2. On the Use of Property-Oriented Basis Sets for the Simulation of Vibrational Chiroptical Spectroscopies,” B. M. Shumberger, E. H. Fink, R. A. King, T. D. Crawford, Mol. Phys. e2293232 (2023). (doi: 10.1080/00268976.2023.2293232)
  3. Reduced Scaling Real-Time Coupled Cluster Theory,” B. G. Beyton, Z. Wang, T.D. Crawford, J. Phys. Chem. A127, 8486-8499 (2023). (doi:10.1021/acs.jpca.3c05151)
  4. Quantum simulation of molecular response properties,” A. Kumar, A. Asthana, V. Abraham, T. D. Crawford, N. J. Mayhall, Y. Zhang, L. Cincio, S. Tretiak, P. A. Dub, J. Chem. Theory Comput. 19, 9136-9150 (2023). (doi: 10.1021/acs.jpca.2c08430) (arXiv: 10.48550/arXiv.2301.06260)
  5. Challenges in the Use of Quantum Computing Hardware-Efficient Ansätze in Electronic Structure Theory,” R. D’Cunha, T. D. Crawford, M. Motta, J. E. Rice, J. Phys. Chem. A 127, 3437-3448 (2023). (doi: 10.1021/acs.jpca.2c08430) (arXiv: 10.48550/arXiv.2208.09832)
  6. Python scripting for biochemistry and molecular biology in Jupyter Notebooks,” P. A. Craig, J. A. Nash, T. D. Crawford, Biochemistry and Molecular Biology Education 50,479-482 (2022). (doi:10.1002/bmb.21676)
  7. MolSSI Education: Empowering the Next Generation of Computational Molecular Scientists,” J. A. Nash, M. Mostafanejad, T. D. Crawford, A. Ringer McDonald, Computing in Science and Engineering 24, 72-76 (2022). (doi: 10.1109/MCSE.2022.3165607)
  8. Applications of a perturbation-aware local correlation method to coupled cluster linear response properties,” R. D’Cunha and T. D. Crawford, Mol. Phys., e2112627 (2022). (doi: 10.1080/00268976.2022.2112627) (arXiv: 10.48550/arXiv.2206.05249)
  9. Accelerating Real-Time Coupled Cluster Methods with Single-Precision Arithmetic and Adaptive Numerical Integration,” Z. Wang, B. G. Peyton, and T. D. Crawford, J. Chem. Theory Comput. 18, 5479–5491 (2022).  (doi: 10.1021/acs.jctc.2c00490)
  10. DFT Exchange: Sharing Perspectives on the Workhorse of Quantum Chemistry and Materials Science,” A. M. Teale, T. Helgaker, A. Savin, C. Adano, B. Aradi, A. V. Arbuznikov, P. Ayers, E. J. Baerends, V. Barone, P. Calaminici, E. Cances, E. A. Carter, P. K. Chattaraj, H. Chermette, I. Ciofini, T. D. Crawford, F. De Proft, J. Dobson, C. Draxl, T. Frauenheim, E. Fromager, P. Fuentealba, L. Gagliardi, G. Galli, J. Gao, P. Geerlings, N. Gidopoulos, P. M. W. Gill, P. Gori-Giorgi, A. Görling, T. Gould, S. Grimme, O. Gritsenko, H. J. Aa. Jensen, E. R. Johnson, R. O. Jones, M. Kaupp, A. Koster, l. Kronik, A. I Krylov, S. Kvaal, A. Laestadius, M. P. Levy, M. Lewin, S. Liu, P.-F. Loos, N. T Maitra, F. Neese, J. Perdew, K. Pernal, P. Pernot, P. Piecuch, E. Rebolini, L. Reining, P. Romaniello, A. Ruzsinszky, D. Salahub, M. Scheffler, P. Schwerdtfeger, V. N. Staroverov, J. Sun, E. Tellgren, D. J. Tozer, S. Trickey, C. A. Ullrich, A. Vela, G. Vignale, T. A. Wesolowski, X. Xu and W. Yang , Phys. Chem. Chem. Phys. 24, 28700-28781 (2022). (doi: 10.1039/D2CP02827A)
  11. Structure Elucidation and Confirmation of Phloroglucinols from the Roots of Garcinia dauphinensis by Comparison of Experimental and Calculated ECD Spectra and Optical Rotations,” K. C. Pearce, R. G. Fuentes, S. Calderon, R. Marolikar, D. G. I. Kingston, and T. D. Crawford, J. Nat. Prod. 84, 1163-1174 (2021). (doi:10.1021/acs.jnatprod.0c01208)
  12. Modeling Complex Solvent Effects on the Optical Rotation of Chiral Molecules: A Combined Molecular Dynamics and Density Functional Theory Study,” R. D’Cunha and T. D. Crawford, J. Phys. Chem. A 125, 3095-3108 (2021). (doi: 10.1021/acs.jpca.1c00803)
  13. PNO++: Perturbed Pair Natural Orbitals for Coupled Cluster Linear Response Theory,” R. D’Cunha and T.D. Crawford, J. Chem. Theory Comput., 17, 290-301 (2021). (doi:10.1021/acs.jctc.0c01086)
  14. The MolSSI Driver Interface Project: A framework for standardized, on-the-fly interoperability between computational molecular sciences codes,” T. A. Barnes, E. Marin-Rimoldi, S. Ellis, and T.D. Crawford, Comp. Phys. Comm., 261, 107688 (2021). (doi:10.1016/j.cpc.2020.107688)
  15. Theory and Implementation of a Novel Stochastic Approach to Coupled Cluster,” C. J. C. Scott, R. Di Remigio, T. D. Crawford, and A. J. W. Thom, J. Chem. Phys. 153, 144117 (2020). (doi:10.1063/5.0026513, PDF Full Text*)
  16. Building capacity for undergraduate education and training in computational molecular science: A collaboration between the MERCURY consortium and the Molecular Sciences Software Institute,” A. R. McDonald, J. A. Nash, P. S. Nerenberg, K. A. Ball, O. Sode, J. J. Foley IV, T. L. Windus, and T. D. Crawford, Int. J. Quantum Chem., e26359 (2020). (doi:10.1002/qua.26359)
  17. Machine-Learning Coupled Cluster Properties through a Density Tensor Representation,” B. G. Peyton, C. Briggs, R. D’Cunha, J. T. Margraf, and T. D. Crawford, J. Phys. Chem. A 124, 4861−4871 (2020). (doi:10.1021/acs.jpca.0c02804)
  18. Psi4 1.4: Open-Source Software for High-Throughput Quantum Chemistry,” D. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C. Schieber, R. Galvelis, P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan, A. M. James, S. Lehtola, J. P. Misiewicz, M. Scheurer, R. A. Shaw, J. B. Schriber, Y. Xie, Z. L. Glick, D. A. Sirianni, J. S. O’Brien, J. M. Waldrop, A. Kumar, E. G. Hohenstein, B. P. Pritchard, B. R. Brooks, H. F. Schaefer III, A. Y. Sokolov, K. Patkowski, A. E. DePrince III, U. Bozkaya, R. A. King, F. A. Evangelista, J. M. Turney, T. D. Crawford, and C. D. Sherrill, J. Chem. Phys. 152, 184108 (2020). (doi:10.1063/5.0006002, PDF Full Text*)
  19. The MolSSI QCArchive Project: An open-source platform to compute, organize, and share quantum chemistry data,” D. G. A. Smith, D. Altarawy, L. A. Burns, M. Welborn, L. N. Naden, L. Ward, S. Ellis, B. P. Pritchard and T. D. Crawford, WIREs Comput Mol Sci 11, e1491 (2021). (doi:10.1002/wcms.1491))
  20. Basis Set Superposition Errors in the Many-Body Expansion of Molecular Properties,” B. G. Peyton and T. D. Crawford, J. Phys. Chem. A 123 (20), 4500-4511 (2019). (doi:10.1021/acs.jpca.9b03864)
  21. Diagrammatic Coupled Cluster Monte Carlo“, C. J. C. Scott, R. Di Remigio, T. D. Crawford, and A. J. W. Thom, J. Phys. Chem. Lett. 10, 925-935 (2019). (doi:10.1021/acs.jpclett.9b00067)
  22. Perspective: Computational Chemistry Software and Its Advancement: Three Grand Challenge Cases for Computational Molecular Science“, A. Krylov, T. Windus, T. Barnes, E. Marin-Rimoldi, J. Nash, B. Pritchard, D. G. A. Smith, D. Altarawy, P. Saxe, C. Clementi, T. D. Crawford, R. Harrison, S. Jha, V. Pande, and T. Head-Gordon, J. Chem. Phys. 149, 180901 (2018). (doi:10.1063/1.5052551, PDF Full Text*)
  23. Calculating Optical Rotatory Dispersion Spectra in Solution Using a Smooth Dielectric Model“, J. C. Howard, T. D. Crawford, J. Phys. Chem. A 122 (43), 8557–8564 (2018). (doi:10.1021/acs.jpca.8b07803)
  24. Phloroglucinols from the Roots of Garcinia dauphinensis and their Antiproliferative and Antiplasmodial Activities“, R. G. Fuentes, K. C. Pearce, Y. Du, A. Rakotondrafara, A. L. Valenciano, M. B. Cassera, V. E. Rasamison , T. D. Crawford, and D. G. I. Kingston, J. Nat. Prod. 82, 431-439 (2018). (doi:10.1021/acs.jnatprod.8b00379)
  25. On the Performance of Property-Optimized Basis Sets for Optical Rotation With Coupled Cluster Theory“, J. C. Howard, S.S.V. Sowndarya, I. Ansari, T. J. Mach, A. Baranowska-ŠLaczkowska, and T. D. Crawford, J. Phys. Chem. A, 122(28), 5962–5969 (2018). (doi:10.1021/acs.jpca.8b04183).
  26. Psi4NumPy: An Interactive Quantum Chemistry Programming Environment for Reference Implementations and Rapid Development“, D. G. A. Smith, L. A. Burns, D. A. Sirianni, D. R. Nascimento, A. Kumar, A. M. James, J. B. Schriber, T. Zhang, B. Zhang, A. S. Abbott, E. J. Berquist, M. H. Lechner, L. A. Cunha, A. G. Heide, J. M. Waldrop, T. Y. Takeshita, A. Alenaizan, D. Neuhauser, R. A. King, A. C. Simmonett, J. M. Turney, H. F. Schaefer, F. A. Evangelista, A. E. DePrince, T. D. Crawford, K. Patkowski, and C. D. Sherrill, J. Chem. Theory Comput., 14(7), 3504-3511 (2018). (doi:10.1021/acs.jctc.8b00286 )
  27. NSF’s Inaugural Software Institutes: the Science Gateways Community Institute and the Molecular Sciences Software Institute“, N. Wilkins-Diehr and T. D. Crawford, Comp. Sci. Eng., 20, 26-38 (2018).  (doi:10.1109/MCSE.2018.05329813 )
  28. Electronically Excited States in Solution via a Smooth Dielectric Model Combined with Equation-of-Motion Coupled Cluster Theory“, J. C. Howard, J. Womack, J. Dziedzic, C.-K. Skylaris, B. P. Pritchard and T. D. Crawford, J. Chem. Theory Comput., 13(11), 5572-5581 (2017). (doi:10.1021/acs.jctc.7b00833).
  29. Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability“, R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E. DePrince, E. G. Hohenstein, U. Bozkaya, A. Y. Sokolov, R. D. Remigio, R. M. Richard, J. F. Gonthier, A. M. James, H. R. McAlexander, A. Kumar, M. Saitow, X. Wang, B. P. Pritchard, P. Verma, H. F. Schaefer, K. Patkowski, R. A. King, E. F. Valeev, F. A. Evangelista, J. M. Turney, T. D. Crawford, and C. D. Sherrill, J. Chem. Theory Comput., 13(7), 3185-3197 (2017). (doi:10.1021/acs.jctc.7b00174)
  30. Antiplasmodial Sesquiterpenoid Lactones from Trichospira verticillata: Structure Elucidation by Spectroscopic Methods and Comparison of Experimental and Calculated ECD Data,” Y. Du, K. C. Pearce, Y. Dai, P. Krai, S. Dalal, M. Cassera, M. Goetz, T. D. Crawford, and D. G. I. Kingston, J. Nat. Prod. 80, 1639-1647 (2017). (doi:10.1021/acs.jnatprod.7b00247)
  31. Frozen Virtual Natural Orbitals for Coupled-Cluster Linear-Response Theory,” A. Kumar and T.D. Crawford, J. Phys. Chem. A 121 (3), 708-716 (2017). (doi:10.1021/acs.jpca.6b11410)
  32. PCMSolver: an Application Programming Interface for the Polarizable Continuum Model“, R. Di Remigio, T. D. Crawford, and L. Frediani, in Producing High Performance and Sustainable Software for Molecular Simulation, E. Lindahl, J. Phillips, and R. Walker, Eds., University of Edinburgh, Edinburgh (2016).
  33. A Comparison of Three Approaches to the Reduced-Scaling Coupled Cluster Treatment of Non-Resonant Molecular Response Properties,” H.R. McAlexander and T.D. Crawford, J. Chem. Theory Comput. 12 209-222 (2016). (doi:10.1021/acs.jctc.5b00898)
  34. The Structure, Anharmonic Vibrational Frequencies, and Intensities of NNHNN+,” Q. Yu, J.M. Bowman, R.C. Fortenberry, J.S. Mancini, T.J. Lee, T.D. Crawford, W.F. Klemperer, and J.S. Francisco, J. Phys. Chem. A 119, 11623-11631 (2015). (doi: 10.1021/acs.jpca.5b09682)
  35. Frozen-Density Embedding Potentials and Chiroptical Properties,” T.D. Crawford, A. Kumar, K.P. Hannon, S. Hoefener, and L. Visscher, J. Chem. Theory Comput. 11, 5305-5315 (2015). (doi: 10.1021/acs.jctc.5b00845)
  36. Communication: Spectroscopic Consequences of Proton Delocalization in OCHCO+,” R.C. Fortenberry, Q. Yu, J.S. Mancini, J.M. Bowman, T.J. Lee, T.D. Crawford, W.F. Klemperer, and J.S. Francisco, J. Chem. Phys. 143, 071102 (2015). (doi: 10.1063/1.4929345, PDF Full Text*)
  37. Simulation of Circularly Polarized Luminescence Spectra Using Coupled Cluster Theory,” H.R. McAlexander and T.D. Crawford, J. Chem. Phys. 142, 154101 (2015). (doi:10.1063/1.4917521, PDF Full Text*)
  38. Incremental evaluation of coupled cluster dipole polarizabilities,” J. Friedrich, H.R. McAlexander, A. Kumar, and T.D. Crawford, Phys. Chem. Chem. Phys. 17, 14284-14296 (2015). (Cover Article, doi: 10.1039/C4CP05076B)
  39. Quantum Chemical Rovibrational Data for the Interstellar Detection of c-C3H,” R.C. Fortenberry, X. Huang, T.D. Crawford, and T.J. Lee, Astrophys. J. 796, 139 (2014). (doi: 10.1088/0004-637X/796/2/139)
  40. Quartic Force Field Rovibrational Analysis of Protonated Acetylene, C2H3+, and Its Isotopologues,” R.C. Fortenberry, X. Huang, T.D. Crawford, and T.J. Lee, J. Phys. Chem. A 118, 7034-7043 (2014). (doi: 10.1021/jp506441g)
  41. Insights on the Origin of the Unusually Large Specific Rotation of (1S,4S)-Norbornenone,” M. Caricato, P. H. Vaccaro, T. D. Crawford, K. B. Wiberg, and P. Lahiri, J. Phys. Chem. A 118 4863–4871 (2014). (doi: 10.1021/jp504345g)
  42. Optical Spectra of the Silicon-Terminated Carbon Chain Radicals SiCnH (n=3,4,5),” D.L. Kokkin, N.J. Reilly, R.C. Fortenberry, T.D. Crawford, and M.C. McCarthy, J. Chem. Phys. 141, 044310 (2014). (doi:10.1063/1.4883521, PDF Full Text*)
  43. Fundamental Vibrational Frequencies and Spectroscopic Constants of cis– and trans-HOCS, HSCO, and Isotopologues via Quartic Force Fields,” R.C. Fortenberry, X. Huang, M.C. McCarthy, T.D. Crawford, and T.J. Lee, J. Phys. Chem. B118, 6498–6510 (2014). (doi: 10.1021/jp412362h)
  44. Computing Optical Rotation via an N-Body Approach,” T.J. Mach and T.D. Crawford, Theor. Chem. Acc. 133, 1449 (2014). (doi: 10.1007/s00214-014-1449-x)
  45. Large Solvation Effect in the Optical Rotatory Dispersion of Norbornenone,” P. Lahiri, K.B. Wiberg, P.H. Vaccaro, M. Caricato, and T.D. Crawford, Angew. Chem. Int. Ed. 53, 1386-1389 (2014). (doi: 10.1002/anie.201306339 )
  46. Vibrational Frequencies and Spectroscopic Constants for 1 3A′ HNC and 1 3A′ HOC+ from High-Accuracy Quartic Force Fields,” R.C. Fortenberry, T.D. Crawford, and T.J.Lee, J. Phys. Chem. A 117, 11339–11345 (2013). (doi: 10.1021/jp408750h)
  47. High-Accuracy Quartic Force Field Calculations for the Spectroscopic Constants and Vibrational Frequencies of of 11Al-C3H: A Possible Link to Lines Observed in the Horsehead Nebula PDR,” R.C. Fortenberry, X. Huang, T.D. Crawford, and T.J. Lee, Astrophys. J. 772, 39-46 (2013). (doi: 10.1088/0004-637X/772/1/39)
  48. Dipole Surface and Infrared Intensities for the cis– and trans-HOCO and DOCO Radicals,” X. Huang, R.C. Fortenberry, Y. Wang, J. Francisco, T.D. Crawford, J.M. Bowman, and T.J. Lee, J. Phys. Chem. A 117, 6932-6939 (2013). (Joel M. Bowman Festshrift) (doi: 10.1021/jp3102546)
  49. The Possible Interstellar Anion CH2CN: Spectroscopic Constants,Vibrational Frequencies, and Other Considerations,” R.C. Fortenberry, T.D. Crawford, and T.J. Lee, Astrophys. J. 762, 121-126 (2013). (doi: 10.1088/0004-637X/762/2/121)
  50. The 13A′ HCN and 13A′ HCO+ Vibrational Frequencies and Spectroscopic Constants from Quartic Force Fields,” R.C. Fortenberry, X. Huang, T.D. Crawford, and T.J. Lee, J. Phys. Chem. A 117, 9324–9330 (2013). (doi: 10.1021/jp309243s)
  51. Properties of atoms under pressure: Bonded interactions of the atoms in three perovskites,” G.V. Gibbs, D. Wang, C. Hin, N.L. Ross, D.F. Cox, T.D. Crawford, M.A. Spackman, and R.J. Angel, J. Chem. Phys. 137, 164313 (2012). (doi:10.1063/1.4759075, PDF Full Text*)
  52. Fundamental Vibrational Frequencies and Spectroscopic Constants of HOCS+, HSCO+, and Isotopologues via Quartic Force Fields,” R.C. Fortenberry, X. Huang, J.S. Francisco, T.D. Crawford, and T.J. Lee, J. Phys. Chem. A 116, 9582-9590 (2012). (doi: 10.1021/jp3073206)
  53. Quartic Force Field Predictions of the Fundamental Vibrational Frequencies and Spectroscopic Constants of the Cations HOCO+ and DOCO+,” R.C. Fortenberry, X. Huang, J.S. Francisco, T.D. Crawford, and T.J. Lee, J. Chem. Phys.136, 234309 (2012). (doi:10.1063/1.4729309, PDF Full Text*)
  54. Localized Optimized Orbitals, Coupled Cluster Theory, and Chiroptical Response Properties, H.R. McAlexander, T.J. Mach, and T.D. Crawford, Phys. Chem. Chem. Phys. 14, 7830-7836 (2012). (doi:10.1039/C2CP23797K)
  55. The Optical Activity of Carvone: A Theoretical and Experimental Investigation,” J.M. Lambert, R.N. Compton, and T.D. Crawford, J. Chem. Phys. 136, 114512 (2012). (doi:10.1063/1.3693270, PDF Full Text*)
  56. Vibrational Frequencies and Spectroscopic Constants from Quartic Force Fields for cis-HOCO: the Radical and the Anion,” R.C. Fortenberry, X. Huang, J.S. Francisco, T.D. Crawford, and T.J. Lee, J. Chem. Phys. 135, 214303 (2011). (doi:10.1063/1.3663615, PDF Full Text*)
  57. The Optimized Orbital Coupled Cluster Doubles Method and Optical Rotation,” G. D. Lindh, T. J. Mach, and T.D. Crawford, Chem. Phys. 401, 125-129 (2012). (special issue honoring Debashis Mukherjee). (doi: 10.1016/j.chemphys.2011.11.002)
  58. The role of long-range intermolecular forces in the formation of inorganic nanoparticle clusters,” G.V. Gibbs, T.D. Crawford, A.F. Wallace, D.F. Cox, R. Parrish, E.G. Hohenstein, and C.D. Sherrill, J. Phys. Chem. A 115, 12933–12940 (2011). (doi:10.1021/jp204044k)
  59. The trans-HOCO Radical: Quartic Force Fields, Vibrational Frequencies, and Spectroscopic Constants,” R.C. Fortenberry, X. Huang, J.S. Francisco, T.D. Crawford, and T.J. Lee, J. Chem. Phys. 135, 134301 (2011). (doi:10.1063/1.3643336, PDF Full Text*)
  60. PSI4: An Open-Source Ab Initio Electronic Structure Program,” J.M. Turney, A.C. Simmonett, R.M. Parrish, E.G. Hohenstein, F. Evangelista, J.T. Fermann, B.J. Mintz, L.A. Burns, J.J. Wilke, M.L. Abrams, N.J. Russ, M.L. Leininger, C.L. Janssen, E.T. Seidl, W.D. Allen, H.F. Schaefer, R.A. King, E.F. Valeev, C.D. Sherrill, and T.D. Crawford, Wiley Interdisciplinary Reviews: Computational Molecular Science 2, 556-565 (2012). (doi:10.1002/wcms.93)
  61. Coupled Cluster Calculations of Vibrational Raman Optical Activity Spectra,” T.D. Crawford and K. Ruud, ChemPhysChem 12, 3442–3448 (2011). (Named a “Very Important Paper” by the ChemPhysChem reviewers and editors). (doi:10.1002/cphc.201100547)
  62. Basis Set Dependence of Coupled Cluster Optical Rotation Computations,” T.J. Mach and T.D. Crawford, J. Phys. Chem. A 115, 10045-10051 (2011). (doi:10.1021/jp204533c)
  63. Singlet Excited States of Silicon-Containing Anions Relevant to Interstellar Chemistry,” R.C. Fortenberry and T.D. Crawford, J. Phys. Chem. A 115, 8119-8124 (2011). (doi:10.1021/jp204844j)
  64. Theoretical Prediction of New Dipole-Bound Singlet States for Anions of Interstellar Interest,” R.C. Fortenberry and T.D. Crawford, J. Chem. Phys. 134, 154304 (2011). (doi:10.1063/1.3576053,PDF Full Text*)
  65. Electronic structure of the two isomers of the anionic form of p-coumaric acid chromophore,” D. Zuev, K.B. Bravaya, T.D. Crawford, R. Lindh, and A.I. Krylov, J. Chem. Phys. 134, 034310 (2011). (doi:10.1063/1.3516211, PDF Full Text*)
  66. Symmetry Breaking in the cyclic-C3C2H Radical,” B.J. Mintz and T.D. Crawford, Phys. Chem. Chem. Phys. 12, 15459-15467 (2010). (doi:10.1039/C0CP00864H)
  67. The Life and Science of Fritz Schaefer,” T.D. Crawford, Mol. Phys. 108, 2439-2445 (2010). (doi: 10.1080/00268976.2010.505213)
  68. A Coupled Cluster Benchmark Study of the Electronic Spectrum of the Allyl Radical,” T.J. Mach, R.A. King, and T.D. Crawford, J. Phys. Chem. A 114, 8852-8857 (2010). (K. Ruedenberg special issue, doi:10.1021/jp102292x)
  69. A Benchmark Study of the Vertical Electronic Spectra of the Linear Chain Radicals C2H and C4H,” R.C. Fortenberry, R.A. King, J.F. Stanton, and T.D. Crawford, J. Chem. Phys. 132, 144303 (2010). (doi:10.1063/1.3376073, PDF Full Text*)
  70. Gas Phase Optical Rotation Calculated from Coupled Cluster Theory with Zero-Point Vibrational Corrections from Density Functional Theory,” T.B. Pedersen, J. Kongsted, and T.D. Crawford, Chirality 21, E68-E75 (2009). (doi: 10.1002/chir.20778)
  71. On the Performance of a Size-Extensive Variant of Equation-of-Motion Coupled Cluster Theory for Optical Rotation in Chiral Molecules,” T.D. Crawford and H. Sekino, Prog. Theor. Chem. Phys. 19, 225-239 (2009). (doi:10.1007/978-90-481-2596-8_10)
  72. Optical activity in conformationally flexible molecules: A theoretical study of large-amplitude vibrational averaging in (R)-3-chloro-1-butene,” T.D. Crawford and W. D. Allen, Mol. Phys. 107, 1041-1057 (2009). (doi:10.1080/00268970902729277)
  73. On the importance of vibrational contributions to small-angle optical rotation: fluorooxirane in gas phase and solution,” T.B. Pedersen, J. Kongsted, T.D. Crawford, and K. Ruud, J. Chem. Phys. 130, 034310(7) (2009). (doi:10.1063/1.3054301, PDF Full Text*)
  74. M2@C79N (M=Y,Tb): Isolation and Characterization of Stable Endohedral Metallofullerenes Exhibiting M-M Bonding Interactions Inside Aza[80]Fullerene Cages” T. Zuo, C.M. Beavers, M.M. Olmstead, L. Xu, W. Fu, T.D. Crawford, A.L. Balch, and H.C. Dorn, J. Am. Chem. Soc. 130, 12992-12997 (2008). (doi:10.1021/ja802417d)
  75. Experimental bond critical point and local energy energy density properties determined for Mn-O, Fe-O, and Co-O bonded interactions for tephrotie, Mn2SiO4, fayalite, Fe2SiO4, and Co2SiO4 olivine and selected organic compounds: Comparison with properties calculated for non-transition and transition metal M-O bonded interactions for silicates and oxides ,” G.V. Gibbs, R.T. Downs, D.F. Cox, K.M. Rosso, N.L. Ross, A. Kirfel, T. Lippmann, W. Morgenroth, and T.D. Crawford, J. Phys. Chem. A 112, 8811-8823 (2008). (doi:10.1021/jp804280j)
  76. Simple Coupled Cluster Singles and Doubles Method with Perturbative Inclusion of Triples and Explicitly Correlated Geminals: The CCSD(T)R12 Model,” E.F. Valeev and T.D. Crawford, J. Chem. Phys. 128, 244113(12) (2008). (doi:10.1063/1.2939577, PDF Full Text*)
  77. Local Correlation Domains for Coupled Cluster Theory: Optical Rotation and Magnetic-Field Perturbations,” N.J. Russ and T.D. Crawford, Phys. Chem. Chem. Phys. 10, 3345-3352 (2008). (doi:10.1039/b804119a)
  78. Room Temperature and Near-Room Temperature Molecule-Based Magnets,” G.T. Yee, M.D. Harvey, and T.D. Crawford, Inorg. Chem. 47, 5649-5655 (2008). (doi:10.1021/ic702359g)
  79. Born-Oppenheimer Symmetry Breaking in the C State of NO2: Importance of Static and Dynamic Correlation Effects,” P.P. Bera, Y. Yamaguchi, H.F. Schaefer, and T.D. Crawford, J. Phys. Chem. A 112, 2669-2676 (2008). (doi:10.1021/jp077561y)
  80. Optical Rotatory Dispersion of 2,3-Hexadiene and 2,3-Pentadiene,” K.B. Wiberg, Y.-g. Wang, S.M. Wilson, P.H. Vaccaro, W.L. Jorgensen, T.D. Crawford, M.L. Abrams, J.R. Cheeseman, and M. Luderer, J. Phys. Chem. A 112, 2415-2422 (2008). (doi:10.1021/jp076572o)
  81. Low-Lying Singlet Excited States of Isocyanogen,” A.L. Ringer, C.D. Sherrill, R.A. King, and T.D. Crawford, Int. J. Quantum Chem. 108, 1137-1140 (2008). (doi:10.1002/qua.21586)
  82. A Comparison of Time-Dependent Density-Functional Theory and Coupled Cluster Theory for the Calculation of the Optical Rotations of Chiral Molecules,” T.D. Crawford and P.J. Stephens, J. Phys. Chem. A 112 1339-1345 (2008). (doi:10.1021/jp0774488)
  83. The Current State of Ab Initio Calculations of Optical Rotation and Circular Dichroism Spectra,” T.D. Crawford, M. C. Tam, and M. L. Abrams, J. Phys. Chem. A111, 12057-12068 (2007). (Feature article) (doi:10.1021/jp075046u)
  84. The Problematic Case of (S)-Methylthiirane: Electronic Circular Dichroism Spectra and Optical Rotatory Dispersion,” T.D. Crawford, M. C. Tam, and M. L. Abrams, Mol. Phys. 105, 2607-2617 (2007). (P. Pulay special issue, doi:10.1080/00268970701598097)
  85. Chiroptical Properties of (R)-3-Chloro-1-butene and (R)-2-Chlorobutane,” M. C. Tam, M. L. Abrams, and T.D. Crawford, J. Phys. Chem. A 111, 11232-11241 (2007). (T.H. Dunning special issue) (doi:10.1021/jp070843d)
  86. PSI3: An Open-Source Ab Initio Electronic Structure Package,” T.D. Crawford, C.D. Sherrill, E.F. Valeev, J.T. Fermann, R.A. King, M.L. Leininger, S.T. Brown, C.L. Janssen, E.T. Seidl, J.P. Kenny, and W.D. Allen, J. Comp. Chem. 28, 1610-1616 (2007). (doi:10.1002/jcc.20573)
  87. The Lowest 2A’ Excited State of the Hydroxyl-Water Complex,” T.D. Crawford, M.L. Abrams, R.A. King, J.R. Lane, D.P. Schofield, and H.G. Kjaergaard, J. Chem. Phys. 125, 204302(6) (2006). (doi:10.1063/1.2388260, PDF Full Text*)
  88. Ab Initio and Analytic Intermolecular Potentials for Ar-CH3OH,” U. Tasic, Y. Alexeev, G. Vayner, T.D. Crawford, T. Windus, and W.L. Hase, Phys. Chem. Chem. Phys. 8, 4678-4684 (2006). (Cover article) (doi:10.1039/b609743j)
  89. Ab Initio Optical Rotatory Dispersion and Electronic Circular Dichroism Spectra of (S)-2-Chloropropionitrile,” T.D. Kowalczyk, M.L. Abrams, and T.D. Crawford, J. Phys. Chem. A 110, 7649-7654 (2006). (doi:10.1021/jp061241h)
  90. Protonated 2-Methyl-1,2-epoxypropane: A Challenging Problem for Density Functional Theory,” P.R. Carlier, N. Deora, and T.D. Crawford, J. Org. Chem. 71, 1592-1597 (2006). (doi:10.1021/jo052303n)
  91. Ab Initio Determination of Optical Rotatory Dispersion in the Conformationally Flexible Molecule (R)-Epichlorohydrin,” M.C. Tam and T.D. Crawford, J. Phys. Chem. A 110, 2290-2298 (2006). (doi:10.1021/jp056093u)
  92. Classification of Metal Oxide Bonded Interactions Based on Local Potential and Kinetic Energy Densities,” G.V. Gibbs, D.F. Cox, T.D. Crawford, K.M. Rosso, N.L. Ross, and R.T. Downs, J. Chem. Phys. 124, 084704(8) (2006). (doi:10.1063/1.2161425, PDF Full Text*)
  93. Sources of Error in Electronic Structure Calculations on Small Chemical Systems,” D. Feller, K.A. Peterson, and T.D. Crawford, J. Chem. Phys. 124, 054107(17) (2006). (doi:10.1063/1.2137323, PDF Full Text*)
  94. A Comparison of ELF and Deformation Electron Density Maps,” G.V. Gibbs, D.F. Cox, N.L. Ross, T.D. Crawford, R.T. Downs, and J.B. Burt, J. Phys. Chem. A 109, 10022-10027 (2005). (doi:10.1021/jp052661u)
  95. Application of Equation-of-Motion Coupled Cluster Methods to Singlet and Triplet Electronic States of HBO and BOH,” N.J. DeYonker, S. Li, Y. Yamaguchi, H.F. Schaefer, T.D. Crawford, R.A. King, and K.A. Peterson, J. Chem. Phys. 122, 234316(13) (2005). (doi:10.1063/1.1927078, PDF Full Text*)
  96. A Mapping of the Electron Localization Function for Earth Materials: A Study of Bonded Interactions and Model Lone- and Bond-Pair Domains,” G.V. Gibbs, D.F. Cox, N.L. Ross, T.D. Crawford, J.B. Burt, and K.M. Rosso, Chem. Phys. Minerals 32, 208-221 (2005). (doi:10.1007/s00269-005-0463-x)
  97. The Structures of m-Benzyne and Tetrafluoro-m-Benzyne,” C.E. Smith, T.D. Crawford, and D. Cremer, J. Chem. Phys. 122, 174309(13) (2005). (doi:10.1063/1.1888570, PDF Full Text*)
  98. Ab Initio Calculation of Optical Rotation in (P)-(+)-[4]Triangulane,” T.D. Crawford, L.S. Owens, M.C. Tam, P.R. Schreiner, and H. Koch, J. Am. Chem. Soc. 127, 1368-1369 (2005). (doi:10.1021/ja042787p, ACS Article on Request)
  99. Coupled Cluster Methods Including Triple Excitations for Excited States of Radicals,” C.E. Smith, R.A. King, and T.D. Crawford, J. Chem. Phys. 122, 054110(8) (2005). (doi:10.1063/1.1835953, PDF Full Text*)
  100. Local Correlation in Coupled Cluster Calculations of Molecular Response Properties,” N.J. Russ and T.D. Crawford, Chem. Phys. Lett. 400, 104-111 (2004). (doi:10.1016/j.cplett.2004.10.083)
  101. A Family of Decamethylmetallocene Charge-Transfer Salt Magnets Using Methyl Tricyanoethylenecarboxylate (MTCE) as the Electron Acceptor,” G. Wang, C. Slebodnick, R.J. Butcher, M.C. Tam, T.D. Crawford, and G.T. Yee, J. Am. Chem. Soc. 126, 16890-16895 (2004). (doi:10.1021/ja0457213)
  102. Coupled Cluster Calculations of Optical Rotatory Dispersion in (S)-Methyloxirane,” M. C. Tam, N. J. Russ and T.D. Crawford, J. Chem. Phys. 121, 3550-3557 (2004). (doi:10.1063/1.1772352, PDF Full Text*)
  103. Potential Energy Surface Discontinuities in Local Correlation Methods,” N. J. Russ and T.D. Crawford, J. Chem. Phys. 121, 691-696 (2004). (doi:10.1063/1.1759322, PDF Full Text*)
  104. Real vs. Artifactual Symmetry Breaking Effects in Hartree-Fock, Density-Functional and Coupled Cluster Methods,” N. J. Russ, T.D. Crawford, and G.S. Tschumper, J. Chem. Phys. 120, 7298-7306 (2004). (doi:10.1063/1.1687336, PDF Full Text*)
  105. Orbital Instability Effects and Symmetry-Breaking in ScO2: Is a Cs Equilibrium Structure Viable?,” S.-J. Kim and T.D. Crawford, J. Phys. Chem. A 108, 3097-3102 (2004). (doi:10.1021/jp036998c, ACS Article on Request)
  106. The Aminoboranylidene-Iminoborane Isomerization,” V.M. Rosas-Garcia and T.D. Crawford, J. Chem. Phys. 119, 10647-10652 (2003). (doi:10.1063/1.1620498, PDF Full Text*)
  107. The Electron-Electron Cusp Condition and Virial Ratio as Indicators of Basis Set Quality,” V.M. Rosas-Garcia and T.D. Crawford, J. Chem. Phys. 118, 2491-2497 (2003). (doi:10.1063/1.1535440, PDF Full Text*)
  108. Locally Correlated Equation-of-Motion Coupled Cluster Theory for the Excited States of Large Molecules,” T.D. Crawford and R.A. King, Chem. Phys. Lett. 366, 611-622 (2002). (doi:10.1016/S0009-2614(02)01639-1)
  109. Potential Curves and Spectroscopic Properties of the Ground State of ClO and for the Ground and Various Excited States of ClO,” S.-J. Kim, Y.-J. Kim, C.-H. Shin, B.-J. Mhin, and T.D. Crawford, J. Chem. Phys. 117, 9703-9709 (2002). (doi:10.1063/1.1516803, PDF Full Text*)
  110. A Mapping of the Electron Localization Function for the Silica Polymorphs Quartz, Coesite and Stishovite: Evidence for Paired-Electron Domains,” G.V. Gibbs, D.F. Cox, T.D. Crawford, and M. Boisen, Phys. Chem. Minerals, 29, 307-318 (2002). (doi:10.1007/s00269-001-0237-z)
  111. The Equilibrium Geometry, Harmonic Vibrational Frequencies, and Estimated Ab Initio Limit for the Barrier to Planarity of the Ethylene Radical Cation,” M.L. Abrams, E.F. Valeev, C.D. Sherrill, and T.D. Crawford, J. Phys. Chem. A, 106, 2671-2675 (2002). (doi:10.1021/jp0134143)
  112. Problematic p-benzyne: Orbital Instabilities, Biradical Character, and Broken Symmetry,” T.D. Crawford, E. Kraka, J.F. Stanton, and D. Cremer, J. Chem. Phys., 114, 10638-10650 (2001). (doi:10.1063/1.1373433, PDF Full Text*)
  113. A New Diagnostic for Open-Shell Coupled-Cluster Theory,” M.L. Leininger, I.B. Nielsen, T.D. Crawford and C.L. Janssen, Chem. Phys. Lett. 328, 431-436 (2000). (doi:10.1016/S0009-2614(00)00966-0)
  114. Some Surprising Failures of Brueckner Coupled Cluster Theory,” T.D. Crawford and J.F. Stanton, J. Chem. Phys. 112, 7873-7879 (2000). (doi:10.1063/1.481424, PDF Full Text*)
  115. Thermokinetic Proton Transfer and Ab Initio Studies of the [2H,S,O]+. System. The Proton Affinity of HSO,” B.K. Decker, N.G. Adams, L.M. Babcock, T.D. Crawford, and H.F. Schaefer, J. Phys. Chem. A 104, 4636-4647 (2000). (doi:10.1021/jp000742e)
  116. Conformations of [10]Annulene: More Bad News for Density-Functional Theory,” R.A. King, T.D. Crawford, J.F. Stanton, and H.F. Schaefer J. Am. Chem. Soc.121, 10788-10793 (1999). (doi:10.1021/ja991429x)
  117. Rotational Spectrum and Theoretical Structure of the Carbene HC4N,” M.C. McCarthy, A.J. Apponi, V.D. Gordon, C.A. Gottlieb, P. Thaddeus, T.D. Crawford and J.F. Stanton, J. Chem. Phys. 111, 6750-6754 (1999). (doi:10.1063/1.479971, PDF Full Text*)
  118. Structure and Energetics of Isomers of the Interstellar Molecule C5H,” T.D. Crawford, J.F. Stanton, J.C. Saeh, and H.F. Schaefer, J. Am. Chem. Soc., 121, 1902-1911 (1999). (doi:10.1021/ja982532+)
  119. Definitive ab initio Structure of the X 2A’ State of the H2PO Radical and Resolution of the P-O Stretching Mode Assignment,” S.S. Wesolowski, E.M. Johnson, M.L. Leininger, T.D. Crawford and H.F. Schaefer, J. Chem. Phys. 109, 2694-2699 (1998). (doi:10.1063/1.476869, PDF Full Text*)
  120. Investigation of an Asymmetric Triple-Excitation Correction for Coupled-Cluster Energies,” T.D. Crawford and J.F. Stanton, Int. J. Quantum Chem. Symp. 70, 601-611 (1998). (doi:10.1002/(SICI)1097-461X(1998)70:4/5<601::AID-QUA6>3.0.CO;2-Z) (Abstract)
  121. Hartree-Fock Orbital Instability Envelopes in Highly Correlated Single-Reference Wavefunctions,” T.D. Crawford, J.F. Stanton, W.D. Allen, and H.F. Schaefer, J. Chem. Phys. 107, 10626-10632 (1997). (doi:10.1063/1.474178, PDF Full Text*)
  122. Spin-Restricted Brueckner Orbitals for Coupled-Cluster Wavefunctions,” T.D. Crawford, T.J. Lee, N.C. Handy, and H.F. Schaefer, J. Chem. Phys. 107, 9980-9984 (1997). (doi:10.1063/1.475302, PDF Full Text*)
  123. A New Spin-Restricted Perturbative Triple Excitation Correction for Coupled Cluster Theory,” T.D. Crawford, T.J. Lee, and H.F. Schaefer, J. Chem. Phys. 107, 7943-7950 (1997). (doi:10.1063/1.475081, PDF Full Text*)
  124. The C 2A2 Excited State of NO2: Evidence for a Cs Equilibrium Geometry and a Failure of Some Spin-Restricted Reference Wavefunctions,” T.D. Crawford, J.F. Stanton, P.G. Szalay, and H.F. Schaefer, J. Chem. Phys. 107, 2525-2528 (1997). (doi:10.1063/1.474592, PDF Full Text*)
  125. The Weakly Bound Dinitrogen Tetroxide Molecule: High Level Single-Reference Wavefunctions are Good Enough,” S.S. Wesolowski, J.T. Fermann, T.D. Crawford, and H.F. Schaefer, J. Chem. Phys. 106, 7178-7184 (1997). (doi:10.1063/1.473679, PDF Full Text*)
  126. On the Energy Invariance of Open-Shell Perturbation Theory with Respect to Unitary Transformations of Molecular Orbitals,” T.D. Crawford, H.F. Schaefer, and T.J. Lee, J. Chem. Phys. 105, 1060-1069 (1996). (doi:10.1063/1.471951, PDF Full Text*)
  127. A Comparison of Two Approaches to Perturbational Triples Corrections to the Coupled-Cluster Singles and Doubles Method for High-Spin Open-Shell Systems,” T.D. Crawford and H.F. Schaefer, J. Chem. Phys. 104, 6259-6264 (1996). (doi:10.1063/1.471287, PDF Full Text*)
  128. Aluminum Monocarbonyl and Aluminum Isocarbonyl,” S.S. Wesolowski, T.D. Crawford, J.T. Fermann,and H.F. Schaefer, J. Chem. Phys. 104, 3672-3675 (1996). (doi:10.1063/1.471536, PDF Full Text*)
  129. A Contribution to the Understanding of the Structure of XeF6,” T.D. Crawford, K.W. Springer, and H.F. Schaefer, J. Chem. Phys. 102, 3307-3311 (1995). (doi:10.1063/1.468642, PDF Full Text*)
  130. Benchmark Studies of Electron Correlation in Six-electron Systems,” J.T. Fermann, C.D. Sherrill, T.D. Crawford, and H.F. Schaefer, J. Chem. Phys. 100, 8132-8139 (1994). (doi:10.1063/1.466807, PDF Full Text*)
  131. Rotational Constants for the C 2A2 State of NO2,” T.D. Crawford and H.F. Schaefer, J. Chem. Phys. 99 7926-7928 (1993). (doi:10.1063/1.465670, PDF Full Text*)
  132. The Balance Between Theoretical Method and Basis Set Quality: A Systematic Study of Equilibrium Geometries, Dipole Moments, Harmonic Vibrational Frequencies, and Infrared Intensities,” J.R. Thomas, B.J. Deleeuw, G. Vacek, T.D. Crawford, Y. Yamaguchi, and H.F. Schaefer, J. Chem. Phys. 99, 403-416 (1993). (doi:10.1063/1.465764, PDF Full Text*)
  133. The Hartley Basis Functions and Transform: Alternatives to Plane Waves and the Fourier Transform,” T.D. Crawford and W. Yang, Chem. Phys. Lett. 192, 45-48 (1992). (doi:10.1016/0009-2614(92)85425-A)
  134. Monofluorinated Hydrogen Sulfide (HFS): A Definitive Theoretical Prediction of the Infrared Spectrum,” T.D. Crawford, N.A. Burton, and H.F. Schaefer, J. Chem. Phys. 96, 2044-2047 (1992). (doi:10.1063/1.462055, PDF Full Text*)

*Copyright American Institute of Physics in given year of publication. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.